PLEASE READ THIS MANUAL BEFORE USING YOUR ACCESS MODULE, and always follow the instructions for safety and proper use. Save this manual for future reference.
Regulatory Compliance

FCC Declaration of Conformity (S-EIDC32)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help

Safety Compliance (S-EIDC32)

infinias model S-EIDC32 has been evaluated in accordance with the requirements of UL294, Standards for Access Control System Units, and found to comply with the aforementioned standards set by Underwriters Laboratories (UL).

Legal Notice

infinias, the infinias logo, and Intelli-M are trademarks of infinias.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. infinias disclaims any proprietary interest in trademarks and trade names other than its own.

infinias
9340 Priority Way West Drive
Indianapolis, IN 46240

Telephone: 866.496.5783 (toll free), email: sales@infinias.com, support@infinias.com

No part of this document may be reproduced or distributed in any form or by any means without the express written permission of infinias. The information in this document is subject to change without notice or obligation.

© Copyright 2013, infinias. All Rights Reserved.
Table of Contents

SECTION 1 Introduction
- 1.1 S-EIDC32 Controller Overview ... 1

SECTION 2 S-EIDC32 Installation
- 2.1 Install the S-EIDC32 .. 3
- 2.2 Wiring the S-EIDC32 interface ... 4
- 2.3 Powering the S-EIDC32 ... 6
- 2.4 IP address setup ... 8
 - 2.4.1 Determining the IP address ... 9
 - 2.4.2 Setting a static IP address within the S-EIDC32 9
 - 2.4.3 Setting up an S-EIDC32 for DHCP addressing 12
 - 2.4.4 Resetting the S-EIDC32 .. 12

SECTION 3 eFamily Update Utility
- 3.1 Installing the eFamily Update Utility ... 13
 - 3.1.1 Installation Procedure .. 13
- 3.2 eFamily Update Procedure .. 16
 - 3.2.1 Update Errors ... 21

SECTION 4 Intelli-M® Hardware Technical Specifications
- 4.1 S-EIDC32 Specifications ... 24
- 4.2 Miscellaneous Computer Hardware Specifications 25

APPENDIX A Demo Kit Wiring .. 27
About this manual
This hardware installation and reference for the Intelli M® access control security system includes a description of the major Intelli-M hardware components and an installation procedure for a typical configuration. Technical specifications for each Intelli-M hardware component are also provided.

This manual provides reference and installation guidance for the S-EIDC32 hardware used in the Intelli M system. Technical specifications are provided. Here is a quick overview of this manual’s Chapters and Appendices:

- **Chapter 1: Overview** — Provides an overview of the Intelli-M system and a brief description of all Chapters and Appendices used in this manual.
- **Chapter 2: S-EIDC32 Installation** (Ethernet Integrated Door Controller) — includes a generalized procedure for installing the S-EIDC32 in a single-door application. This chapter also includes procedures to find the IP address of the unit, setup a static IP address, and perform a factory reset.
- **Chapter 3 — eFamily Update Utility** - This chapter describes how to use the eFamily Update Utility. This utility can be used to update the S-EIDC32 firmware of an eFamily device; backup a device configuration (including card holders, schedules, and services) and event history log, and/or restore a backup configuration.
- **Chapter 4: Intelli-M Hardware Technical Specifications** — Gives the technical specifications for the for the various Intelli-M hardware components discussed in this manual.
- **Appendix A: Demo Kit Wiring** — Provides the default configuration parameters if wiring the S-EIDC32 for a demo kit.
SECTION 1

Introduction

The infinias Intelli-M Access system employs the S-EIDC32 Ethernet integrated door controller to provide a state-of-the-art security interface for monitoring systems such as DVRs, communication servers, and workstations. Small enough to fit into any standard double gang box, it provides peer-to-peer communications and receives power across a single Cat 5 or Cat 6 cable connected to a Power over Ethernet (PoE) enabled Ethernet hub. The S-EIDC32 can distribute power to a card reader, strike and other door control peripherals.

1.1 S-EIDC32 Controller Overview

The Intelli-M S-EIDC32 Ethernet integrated door controller (eIDC32) provides access control and alarm services for a single door. The cutting-edge technology of Power over Ethernet (PoE) allows you to run a single cable carrying both power and data for the controller and all peripheral door hardware. The controller has LEDs built into it for verifying connections to peripherals in the security system.
SECTION 1: INTRODUCTION

Technical Features

The S-EIDC32:

- Supports a local database of 8,000 card holders in web mode, 64,000 cardholders in managed mode.
- Capacity for buffering 16,000 local events.
- Two reader ports for entry and exit configurations (with or without keypads)
- Supports DHCP or static IP addressing
- Provides encrypted communication (AES 128 bit)
- Includes an embedded Web server providing complete control of the device without the need of a server for a stand-alone door
- Includes a non-mechanical, infrared tamper sensor for high reliability and precision.
- Includes a built-in warning buzzer for local alarm reporting. It does not require an external alarm device.

UL Requirements

- The S-EIDC32 device must be installed within the protected area (locked area) of the access.
- UL approved panic hardware must be used to allow emergency exit from the protected area.
- Peer-to-peer communication, IP protocol support (DHCP), and AES 128-bit encrypted communications have not been UL verified for the S-EIDC32.
SECTION 2
S-EIDC32 Installation

This Chapter provides a general description of the S-EIDC32 controller hardware installation for a single entrance system. It includes:

- Box installation
- Wiring S-EIDC32 door components
- Powering the S-EIDC32
- Determining the network IP address type
- Setting an IP address of the S-EIDC32
- Resetting an S-EIDC32

2.1 Install the S-EIDC32

Box installation

The S-EIDC32 can be installed in a Quick Mount Assembly any standard double-gang box.

1. Install the box for the S-EIDC32 controller in a location where:
SECTION 2: S-EIDC32 INSTALLATION

- It can connect to all devices that it interfaces with
- It can be accessed for reconfiguration and maintenance
- It discourages tampering

NOTE
- The S-EIDC32 Quick Mount Assembly components are shown below.
- To meet UL requirements, unauthorized access of the Quick Mount Assembly is not permitted.

Quick Mount Assembly components

2. Attach the mounting plate to the box. Ensure that the UP mark on the mounting plate is at the top.

2.2 Wiring the S-EIDC32 interface

The S-EIDC32 controller can connect to the following devices:
- Ethernet connection and powering (communications I/O, PoE powering)
- Door strike (output)
- Door contact switch
- Card reader(s) or keypad(s) (inputs) and reader LED(s) (outputs)
- Electromagnetic lock (output)
- External buzzer (output)
- Other inputs and outputs
S-EIDC32 interface connections

Important

To meet UL requirements, the following circuit connections at the S-EIDC32 must occur in a “protected area”, i.e. an area within the locked area of the access facility:

- **Input power**: PW1+, PW1-
- **Outputs**: OC1, +, OC2
- **Relay inputs**: IN1, C, IN2, C, IN3, C, IN4 (input terminal C is DC common or ground.)
- **Relay outputs**: NC, C, NO (these must be connected to a lock within the same room. Output terminal C is common between the terminal NC and NO contacts on the relay. For example, if the relay is energized, NO is connected to C and NC is not)

1. Route the wiring from all devices to which the S-EIDC32 will connect into the box and out through the mounting plate.

2. Connect the door strike or electromagnet lock to the screw-down terminals on the sides of the S-EIDC32 (see the diagram above). Consider the following:
 - A current of 750 mA @ 12 Vdc is provided through the S-EIDC32 and shared by peripheral devices.
 - The Output 1 (OC1) and Output 2 (OC2) open collector outputs to a door strike or similar device provides ≤ 12 Vdc @ 450 mA combined. OC1 and OC2 each have their own – (negative) terminal but share a + (positive) terminal. OC1 and OC2 are software configurable as E (energized) or DE (de-energized).
SECTION 2: S-EIDC32 INSTALLATION

— Output 3 (relay output) has separate terminals for C (common), NO (normally open), and NC (normally closed). The software designation for this output must match the device for proper status reporting.

— A magnetic lock or similar device can be powered by an open collector output (OC1 or OC2) if it draws less than 450 mA. If it draws more than 450 mA, then it must be wired to the Output 3 C relay (5A @ 30 Vdc) labeled NC or NO terminals, and powered externally.

Important: To meet UL requirements, UL listed panic hardware must be used to allow an emergency exit from a protected area.

3. Connect the status, shunt, and exit inputs. When connecting this types of devices, consider the following:

— Input devices can be wired to S-EIDC32 inputs IN1, IN2, IN3, IN4 and their respective C (common) terminals.

— Inputs IN1 .. IN4 are software configurable for NO (normally open) or NC (normally closed).

— EOLR (end of line resistance) supervision is software selectable. It provides a 1K ohm input impedance.

4. Connect the readers to the S-EIDC32. Consider the following:

— Reader IN (D0, D1, GND, 12V+) and reader OUT (D0, D1, GND, 12V+) are internally configured, each having their own Data 0, Data 1, DC-, and DC+ connections.

— Only readers can be wired to the reader DO (Data 0) and D1 (Data 1) terminals.

— Reader IN 12V+ and reader OUT 12V+ open collector outputs each have a maximum load of 250 mA.

— The total load of all 4 open collector outputs (OC1 + OC2 + reader IN 12V+ + reader OUT 12V+) must not exceed 750 mA.

— Connect the LED (reader LED control) and BUZ (reader buzzer control) terminals to the readers as needed.

5. Connect an Ethernet cable to the S-EIDC32 network port.

2.3 Powering the S-EIDC32

The S-EIDC32 can be powered by either a PoE enabled switch or an external power source.

1. Apply power to the S-EIDC32 using one of the power options shown below.
Using PoE, run a network cable from a switch with PoE to the S-EIDC32.

Use a commercial midspan PoE injector between the switch and the S-EIDC32 to provide power.

Use an external 24 Vdc, 1 A power supply connected directly to the S-EIDC32 PW+ and PW- terminals.

CAUTION: If using this power option, do not apply power to the External Power Supply before completing step 2 below.

Use a S-PCON-PS single port injector fed by a UPS to power the S-EIDC32 through PoE.

Powering options

NOTE When using PoE, the S-EIDC32 can request a maximum power of 15.4 watts from the port. A PoE enabled switch has a total power budget that is divided among all the PoE switch ports; therefore, the total power draw from all PoE equipment connected to the switch cannot exceed the switch power budget. Exceeding the power budget of a PoE enabled switch can cause an S-EIDC32 to fail.

2. Snap the S-EIDC32 into the mounting plate. See the photo below.
3. After all install procedures are complete, install the cover.

2.4 IP address setup

When the S-EIDC32 is powered on for the first time, it attempts to acquire its network settings through DHCP (factory default). If it cannot find (get a reply from) a DHCP server, it configures itself with a static IP address of 169.254.1.1. The acquired (or configured) IP address is indicated by the flashing patterns of LEDs on the face of the device after power on initialization.

To establish an initial network connection to the device for configuration setup and monitoring, the IP address must be known. Use the following procedures to determine the IP address, the type of address the controller is using, and to reconfigure the network settings, if necessary.

NOTE

With static IP addressing is used, the S-EIDC32 is configured with IP address, Subnet Mask, and Gateway remain fixed (static). These network settings do not change unless the device is intentionally configured otherwise, or the device is reset to the factory default configuration. There is often cost involved when using static addressing, especially when these addresses are acquired from a public internet source.

When using DHCP addressing, an S-EIDC32 on power up sends a request for an address lease to any DHCP server on the network. If a DHCP server is active on the network, it will respond with an IP address, Subnet Mask, and Gateway (i.e., an alternate route) for the S-EIDC32. The S-EIDC32 will store this information.

There are two basic types of DHCP addressing:
- Dynamic DHCP addressing with an expiration time limit
- Permanently Leased DHCP addressing (recommended)

Dynamic DHCP addressing may expire, causing the DHCP server to assign a different address to the S-EIDC32. If Supervisor Plus software is used with the S-EIDC32 after the assumed address expires, failures can occur within the S-EIDC32 and Supervisor Plus software application. Therefore, if DHCP addressing is used, ensure that only Permanently Leased DHCP addressing with the S-EIDC32. Check with your network administrator to ensure that the network is will use only Permanently Leased DHCP addressing with your S-EIDC32.
2.4.1 Determining the IP address

The IP address of the S-EIDC32 is needed to login to the unit and perform configuration changes.

1. Disconnect the power from the S-EIDC32, and then reconnect the power.

2. Observe and record the flashing patterns of the LEDs on the face of the S-EIDC32. Note that the LEDs on the left side are numbered 1 – 5, the LEDs on the right are numbered 6 – 0. The normal sequence occurs as follows:
 a. All LEDs flash three times.
 b. A numbered (LED) will flash representing a number in the IP address. Each number group of numbers is separated by all LEDs flashing once.
 Example: An IP address of 145.198.1.1 is indicated by the following flashing pattern:
 #1 flashes ➔ #4 flashes ➔ #5 flashes ➔ all LEDs flash ➔ #1 flashes ➔ #9 flashes ➔ #8 flashes ➔ all LEDs flash ➔ #1 flashes ➔ all LEDs flash ➔ #1 flashes ➔ all LEDs flash.
 c. The previous sequence repeats 3 times, and then the S-EIDC32 progresses to normal operation.

 NOTE If the unit is configured for DHCP addressing (factory default) and all initially LEDs flash after power on for 10 seconds, a DHCP IP address cannot be acquired (i.e., there is no DHCP connection). When this occurs, the S-EIDC32 will revert to its default static address of: 169.254.1.1. The default static address can be changed when the S-EIDC32 is configured.

2.4.2 Setting a static IP address within the S-EIDC32

To configure the S-EIDC32 with a static default IP Address, Subnet Mask, do the following:

1. Determine the current IP address of the S-EIDC32 (see Determining the IP address above).

2. Obtain a valid static IP Address, Subnet Mask, and Gateway for the S-EIDC32 from the Network Administrator of the facility where the S-EIDC32 is located.

3. From a computer on the network with the S-EIDC32, direct a web browser to the current IP address (from step 1 above) of the S-EIDC32.
4. In the initial infinias screen (Intelli-M Supervisor (Web)), enter the NAME (username) and PASSWORD (password) for the S-EIDC32 you connected to. The default username is admin and the default password is admin (lower case), then click Login.

NOTE
If the username and/or password were changed and are unknown, perform a factory reset of the S-EIDC32 to restore it to its default settings. See Resetting the S-EIDC32 below.

5. Click the System button at the top of the screen, and then click Controllers.
6. Select (highlight) your S-EIDC32 controller and then click Modify.

7. Uncheck the Use DHCP box by clicking it. This will allow you to edit the IP Address, Subnet Mask, and Gateway fields.

8. Enter the new IP Address, Subnet Mask, and Gateway information into the appropriate fields.

9. Click OK to set the changes. Allow the unit to reboot and initialize.

You can now login to the S-EIDC32 using the new IP address.
2.4.3 Setting up an S-EIDC32 for DHCP addressing

The S-EIDC32 is shipped from the factory set for DHCP addressing. If you are not sure an S-EIDC-U is set for DHCP addressing, or need to set an S-EIDC32 for DHCP addressing, do the following:

1. Determine the current IP address of the S-EIDC32 (see Determining the IP address above).
2. Using a standard web browser, browse to the IP address obtained in Step 1.
3. In the initial infinias screen (Intelli-M Supervisor (Web), enter the NAME (username) and PASSWORD (password) for the S-EIDC32 you connected to (the default username is admin and the default password is admin (lower case)), then click Login.

 NOTE If the username and/or password were changed and are unknown, perform a factory reset of the S-EIDC32 to restore it to its default settings. See Resetting the S-EIDC32 below. Resetting the unit will force it to use DHCP addressing.

4. Click the System button and then click Controllers.
5. Select the S-EIDC32 controller (highlight the line) and then click Modify.
6. If the Use DHCP box is checked, DHCP is already enabled; click Cancel. If the box is unchecked, click the box to check it, then click OK. This enables DHCP addressing for the S-EIDC32.

2.4.4 Resetting the S-EIDC32

This reset procedure will force the S-EIDC32 to revert to its original factory default configuration. All configuration changes made to the device will be reset.

1. Disconnect power from the S-EIDC32. If it is powered using PoE, disconnect the network cable.
2. Disconnect wiring connected to the IN2 and BUZ terminals if necessary.
3. Connect a jumper wire from the IN2 terminal to the BUZ terminal.
4. Reapply power to the S-EIDC32.
5. Wait about 4 seconds, then remove the jumper wire between the IN2 and BUZ terminals. Do not remove power to the unit.
6. Wait for the LEDs to start flashing the IP address sequence (see Determining the IP address above). You may have to wait up to 5 minutes before the flashing occurs.
7. When the LEDs start to flash, disconnect the power, then reapply power to the S-EIDC32.

The reset procedure is complete. The S-EIDC32 is restored to its factory default settings.
SECTION 3

eFamily Update Utility

With the eFamily Update Utility you can update the firmware, backup the device configuration (including card holders, schedules, and services) and event history log. You can also restore a backup configuration to an eFamily device.

3.1 Installing the eFamily Update Utility

Installation of the eFamily Update Utility is dependent on Intelli-M® Supervisor Plus or the Intelli-M® Web Interface.

Supervisor Plus users

The eFamily Update Utility can be found on the Intelli-M Supervisor Plus installation CD. When the CD is placed into the CD-ROM drive, right-click the drive icon in “My Computer”, then select Open. Navigate to the eFamily Update Utility folder, and then follow the installation procedure steps below.

Web Interface Users

The eFamily Update Utility file can be downloaded from the infinias Web site at: www.infinias.com.

3.1.1 Installation Procedure

Install the eFamily Update Utility as follows:

1. If the file was downloaded from the Web site, unzip the file to a temporary location.

2. In the folder with the installation files, double click setup.exe.
SECTION 3: eFAMILY UPDATE UTILITY

Setup Welcome Screen

3. Click **Next** to open the **Select Installation Folder** screen.

Select Installation Folder Screen
On the Select Installation Folder screen:

- Indicate whether the utility will be used by you only, or if it will be used by anyone who has access to the computer.
- Use the Disk Cost button to determine how much space is available on each computer hard drive, and how much disk space (cost) will be used after the program is installed.
- Use the Browse button to install the utility at some location on the computer other than the default location.

4. Click Next to open the Confirm Installation screen. Follow the instructions shown.

5. Click Next. A screen displaying the progress of the installation process will be displayed.

6. Click Close.

Before updating your eFamily device

Before updating an eFamily device, obtain the following information:

- IP Address of the device you want to update
- Port number configured for communication. The default port number is 18777.
- FTP Username and Password for that device. The default Username and Password is the word “admin” without the quotes.
- Location of the update file
If you are unsure of the IP address for the eFamily device you plan to update, power cycle the device. As the device boots, the IP address will be signaled by the LEDs. Refer to the Determining the IP address section in Chapter 2 of this manual for details on reading the IP address from an eFamily device.

3.2 eFamily Update Procedure

Perform the following steps to update an eFamily device:

CAUTION

If either the Supervisor Plus software or the Web Interface software is running, close them before launching the eFamily Update Utility. To avoid conflicts with these or other programs, infinias recommends that the device be installed on an isolated network during a firmware update.

1. Launch the eFamily Update Utility. (Start > All Programs > infinias > Intelli-M Utilities > eFamily Update Utility). The following screen will be displayed.

NOTE

If .NET Framework 2.0 is not installed on your computer, you will be prompted to install it before running the eFamily Update Utility.

2. In the Device Connection Information screen enter the IP address of the device to be updated.
The data TCP port number, FTP user name, and FTP password shown are the system defaults. If those parameters changed, enter the correct information.

3. Click **Next** to display the **Backup File** screen. Updating an eFamily device erases its configuration settings. If you want to keep the current settings, back up the device first.

If you select **Yes**, **Backup Device Configuration** is enabled. An additional option allows you to **Backup Event History**.

 - Click **Browse** to change the default name of the backup file (by default, the backup file includes the timestamp `yyyymmdd` per the computer’s clock). Browse can also be used to change the default location where the device current configuration is saved.

If you select **No**, a verify skip backup dialog is displayed and **Skip Configuration Backup Step** is enabled.
SECTION 3: eFAMILY UPDATE UTILITY

Click **Next** to display the **Update File** screen.

4. The firmware update file has an `.iti` or `.xml` extension. Use **Browse...** to navigate to the file folder, click the file to highlight it, then click **Open**.
SECTION 3: eFAMILY UPDATE UTILITY

Example of Browse button usage

If Skip Firmware Update is selected, click Next, then go to Step 5.

If Skip Firmware Update is NOT selected, click Next, then go to Step 6.

5. Use the Restore File screen to download a configuration file, such as previously backed up configuration, into the device. Use the Browse... to navigate to the file, and then click Next. The backed up configuration file must have an .iti or .xml extension.
SECTION 3: eFAMILY UPDATE UTILITY

An additional option to Restore Event History is also provided. Check this box if necessary and if the Event History was previously saved.

6. In the Summary of Tasks screen, check the list to make sure the tasks listed are the ones desired. Click Back to make changes to the tasks that will be done.

7. Click Next to update the device. An update screen will show the progress of the download.
8. When the update completes, review the list of tasks that were completed, then click Finish to close the utility.

3.2.1 Update Errors

When problems occur during the update process, a pop-up window similar to that shown below includes a description of the problem.

Click OK to close the message window. When update problems occur:

- Verify that the device is online and operating properly.
- Verify that neither the Supervisor Plus software nor the Web Interface is monitoring the device during the update process. These programs will interfere with the utility to configure your device properly.
- Use the Back button on the utility window to verify the information specified on each screen, then re-run the update.
Select one or more controllers using shift-click or ctrl-click. Right-click on the controller(s) you selected to choose one of four options: Modify, Upgrade firmware, Export List, Buzzer On/Off.

Choose **Modify** to open a window where you can set a range of controllers to DHCP or not DHCP (Static), and Reset or Reboot them.
Choosing **Upgrade** firmware opens a file browser through which you can select the firmware to upload.

There are usually two versions of the firmware xml definition file; one will have ‘**full**’ in the name.

- **‘full’** version: Overwrites all files. The firmware, the files on the web site in the controller and the database are upgraded. Clears the database and sets the default configuration, requiring an Update from Intell-M Access to reconfigure the controller.
- **‘non-full’** version (recommended): The firmware is always upgraded. Overwrite a file, such as the web site on the controller and the database, only if there is a newer version. Keeps the database intact when possible, leaving the controller fully configured and functional after the update.

Selecting a firmware file automatically starts the upgrade.

Select **Export** to export to XML the list of doors, addresses and firmware versions shown in the tool.

Select **Buzzer On/Off** to turn on or turn off the buzzer on the selected controller. This feature can be useful to physically identify the controller.
SECTION 4
Intelli-M® Hardware Technical Specifications

4.1 S-EIDC32 Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Ethernet 10BASE-T with a maximum distance 100 meters (328 feet)</td>
</tr>
<tr>
<td>Reader ports</td>
<td>2</td>
</tr>
<tr>
<td>Reader power</td>
<td>12 VDC @ 250 mA per reader port (shared with Output 1 and Output 2)</td>
</tr>
<tr>
<td>Reader types</td>
<td>Standard Wiegand (HID ProxPoint Plu 6005 series, HID ProxPro 5355 series, XceedID model XF2100). Smart card readers are not supported.</td>
</tr>
<tr>
<td>Inputs</td>
<td>4 programmable inputs with configurable circuit type (contact closure or TTL) EOLR (end of line resistor) supervision Integrated infrared tamper sensor*</td>
</tr>
<tr>
<td>Outputs</td>
<td>Outputs 1, 2 (programmable) — Open collector outputs with electronic overload protection (max 450 mA @ 12 VDC) Output 3 (programmable) — Form C, SPDT relay output with configurable initial state (max 5 Amp @ 30 VDC) Output 4 — built-in warning buzzer or alarm tone generator (max 85 dB)</td>
</tr>
<tr>
<td>Certifications</td>
<td>CE, FCC, ROHS, UL 294</td>
</tr>
<tr>
<td>EIDC Size (w x h x d)</td>
<td>1.7" x 2.82" x 1.3" (4.32 cm x 7.16 cm x 3.3 cm)</td>
</tr>
<tr>
<td>EIDC Weight</td>
<td>3.7 oz (105 g)</td>
</tr>
<tr>
<td>Power requirements</td>
<td>Direct — PoE switch (PoE has not been UL verified)</td>
</tr>
<tr>
<td></td>
<td>Optional — External power supply (24 Vdc, 1 A)</td>
</tr>
<tr>
<td>Environmental requirements</td>
<td>Operating Temperature — 32 °F to 120 °F (0 °C to 49 °C)</td>
</tr>
<tr>
<td></td>
<td>Storage Temperature — 40 °F to 150 °F (-40 °C to 66 °C)</td>
</tr>
<tr>
<td></td>
<td>Humidity — 0 to 85% relative humidity (non-condensing)</td>
</tr>
<tr>
<td>Quick Mount Assembly Kit Enclosure</td>
<td>Recessed box enclosure (w x h x d) — 3" x 4.3" x 2.84" (10.9 cm x 10.9 cm x 7.2 cm)</td>
</tr>
<tr>
<td></td>
<td>Plaster ring — 4.75" x 4.75" x 0.48" (12.1 cm x 12.1 cm x 1.2 cm)</td>
</tr>
<tr>
<td></td>
<td>Cover plate — 4.75" x 4.75" x 0.48" (12.1 cm x 12.1 cm x 1.2 cm)</td>
</tr>
</tbody>
</table>

* The tamper sensor can be programmed within the Alarm Services of the Supervisor Plus software. It must be enabled to meet UL requirements. Refer to the “Intelli-M Software Installation and Reference” manual. The Supervisor Plus software has not been UL verified.

** The S-EIDC32 provides 750 mA of continuous power.

- The maximum total of all output power is 12 Vdc @ 750 mA.
- The maximum output power to the reader is 12 Vdc @ 250 mA.
- The maximum output from the combined open collectors, is either 450 mA or 750 mA less the sum of the readers, whichever is less.
NOTE Specifications are subject to change without notice.

4.2 Miscellaneous Computer Hardware Specifications

NOTE Miscellaneous Computer Hardware Specifications have not been UL verified.

Performance Communications Server Requirements

The minimum requirements for a Performance Communication Server are as follows:

- 2 GHz CPU
- 1 GB RAM
- 120 GB hard disk
- 2 serial communication ports
- 1 parallel port
- 1 USB port (or additional parallel port for badging)
- 19” 1280 x 1024 true color monitor
- Operating system: Microsoft® Windows® XP Professional or Windows 2000 (service pack 4)
- Standard keyboard
- Standard mouse

Minimum Server Requirements

The minimum requirements for a Server are as follows:

- 1 GHz CPU
- 512 MB RAM
- 80 GB hard disk
- 2 serial communication ports
- 1 parallel port
- 1 USB port (or additional parallel port for badging)
- 15” SVGA color monitor (1024 x 768, 16 bit)
- Operating system: Microsoft Windows XP Professional or Windows 2000 (service pack 4)
- Standard keyboard and mouse
SECTION 4: INTELLI-M HARDWARE TECHNICAL SPECIFICATIONS

Performance Badging / Workstation Requirements

The minimum requirements for a Performance Badging / Workstation are as follows:

- 2 GHz CPU
- 512 GB MB RAM
- 20 GB hard disk
- 1 parallel port
- 1 USB port (or additional parallel port for badging)
- 19" 1280 x 1024 true color monitor
- Operating system: Microsoft Windows XP Professional or Windows® 2000 (service pack 4)
- Standard keyboard and mouse

Minimum Badging / Workstation Requirements

The minimum requirements for a Badging / Workstation are as follows:

- 1 GHz CPU
- 512 MB RAM
- 20 GB hard disk
- 1 parallel port
- 1 USB port (or additional parallel port for badging)
- 15" SVGA color monitor (1024 x 768, 16 bit color)
- Operating system: Microsoft Windows XP Professional or Windows 2000 (service pack 4)
- Standard keyboard and mouse

Network Requirements

- The MSDE/MSSQL database must be accessible from all computers.
- Recognition is established using the computer name on the network.
- Computers must be visible to each other through the Microsoft-compliant network.
- Intelli-M Supervisor Plus requires the TCP/IP network protocol.
APPENDIX A Demo Kit Wiring

The wiring guidelines included below for the S-EIDC32 demo kit include default configuration parameters.

Important: An alarm is defined within Intelli-M as an event (i.e., alert) that is sent to the software monitoring the S-EIDC32. This is not a “burglar alarm” nor has it has not been verified by UL.

![S-EIDC32 Demo Kit Wiring Diagram]

Defaults:
- Inputs: Demo kit inputs (push buttons or toggles) should be wired as Normally Open
- Outputs: Initial status = de-energized

Input Configuration:
- Input 1: door contact (NO)
- Input 2: REX (NO)
- Input 3: REX free egress (NO)

Output Configuration:
- Output 1: door strike (DE)
- Output 2: alarm LED (DE)
- Output 3: door status LED (DE)
- Output 4: buzzer (DE)
APPENDIX A: DEMO KIT WIRING

Controller Configuration:

- Description: S-EIDC32 300
- IP Address: 169.254.1.1
- Serial #: Obtain from back of S-EIDC32
- Reader Type:
 - IN: Card reader
 - OUT: Reader + keypad

Access Service Configuration:

- General Tab:
 - Description: Basic Door
 - Controller: S-EIDC32 (local default - 1.300)
 - Lock Schedule: Default (1/0/0/0)
 - Unlock Mode: Default Pulse (4 sec)
 - Door Open Too Long: Default
 - Anti-Passback: Default
- Inputs Tab:
 - Input 1 – Door Contact (Enable Door Status)
- Outputs Tab:
 - Lock Outputs:
 - Output 1 – Door Strike
 - Output 3 – Door Status LED
 - Warning Outputs:
 - Output 4 – Buzzer
- Triggers Tab:
 - Triggers:
 - CR-IN – Reader
 - CR-OUT – Reader + keypad
 - Input 2 – REX

Alarm Service Configuration:

- General Tab
 - Controller: S-EIDC32 (local default - 1.300)
 - Input: Input 1 – Door Contact
 - Output: Output 2 – Alarm LED
 - Conditions: Input 3 – REX Free Egress